

Math 565: Functional Analysis

Lecture 7

Complex vs. real linear functionals. Let X be a vector space over \mathbb{C} .

(a) If f is a complex linear functional on X then $\text{Im } f(x) = -\text{Re } f(ix)$ so $f(x) = \text{Re } f(x) - i\text{Re } f(ix)$.
 (b) Conversely, if u is a real linear functional on X , then $f(x) := u(x) - iu(ix)$ is a complex linear functional on X .

If, moreover, X is normed, then $\|u\| = \|\text{Re } f\| = \|f\|$.

Proof. (a) If f is a complex lin. functional, then both $\text{Re } f$ and $\text{Im } f$ are real linear functionals, and $\text{Im } f(x) = -\text{Re } f(ix)$.

(b) If u is a real lin. functional on X then $f(x) = u(x) - iu(ix)$, then f is linear over \mathbb{R} by definition, and also $f(ix) = u(ix) - iu(-x) = u(ix) + iu(x) = i(u(x) - iu(ix)) = i f(x)$, so f is also complex linear.

Finally, suppose X is a unital vector space. Since $|\text{Re } f(x)| \leq |f(x)| \leq \|f\| \|x\|$, so $\|\text{Re } f\| \leq \|f\|$. On the other hand, if $f(x) \neq 0$, then taking $d := \overline{\text{sgn } f(x)}$, we get $|f(x)| = d \cdot f(x) = f(dx) = |\text{Re } (dx)| \leq \|\text{Re } f\| \|dx\| = \|\text{Re } f\| \|x\|$, so $\|f\| \leq \|\text{Re } f\|$. QED

Dual of L^p

Theorem. Let (X, \mathcal{B}, μ) be a σ -finite measure space and $1 \leq p < \infty$. Then $L^p(\mu)^* \cong L^q(\mu)$ where q is the conj. exp. of p . More precisely, the map $L^q(\mu) \rightarrow L^p(\mu)^*$ by $g \mapsto I_g$ is an isometric isomorphism.

Proof. We have already shown that $g \mapsto I_g$ is an isometry, so it remains to show surjectivity. Fix a bdd linear functional $I \in L^p(\mu)^*$.

Case $\mu < \infty$. Then all simple functions are in $L^p(\mu)$ so for any μ -measurable set $B \subseteq X$, we can set $\rho(B) := I(\mathbf{1}_B)$. We show that ρ is a complex measure. Indeed,

$p(\emptyset) = p(\mathbb{1}_{\emptyset}) = I(\emptyset) = 0$ and if $B = \bigcup_{n \in \mathbb{N}} B_n$ then $\mathbb{1}_{\bigcup_{n \in N} B_n} = \sum_{n \in N} \mathbb{1}_{B_n} \nearrow \mathbb{1}_B$, so $\|\mathbb{1}_B - \sum_{n \in N} \mathbb{1}_{B_n}\|_p = \|\sum_{n > N} \mathbb{1}_{B_n}\|_p \rightarrow 0$ by DCT since $\mathbb{1}_B \in L^p(p)$ as $p < \infty$ and $p < \infty$ (otherwise $\|\sum_{n > N} \mathbb{1}_{B_n}\|_\infty = 1$). Since I is continuous, we get $I(\sum_{n \in N} \mathbb{1}_{B_n}) \rightarrow I(\mathbb{1}_B)$ as $N \rightarrow \infty$, and by linearity, we have $\sum_{n \in N} p(B_n) \rightarrow p(B)$ as $N \rightarrow \infty$, so $\sum_{n \in N} p(B_n)$ converges to $p(B)$. Since regardless of rearrangement, the series converges to the same $p(B)$, by the Riemann rearrangement theorem, $\sum_{n \in \mathbb{N}} p(B_n)$ converges absolutely, i.e. $\sum_{n \in \mathbb{N}} |p(B_n)| < \infty$. Hence p is a complex measure. Observe that $p < \mu$ since if $\mu(B) = 0$ then $\mathbb{1}_B = 0$ a.e. so $p(B) = I(\mathbb{1}_B) = I(\emptyset) = 0$. Let $g := d\mu/d\mu$, so for each indicator function $\mathbb{1}_B$,

$$I(\mathbb{1}_B) = p(B) = \int_B g \, d\mu = \int \mathbb{1}_B g \, d\mu,$$

hence this is true for all simple functions instead of $\mathbb{1}_B$, by linearity.

Thus: for all simple functions $s: X \rightarrow \mathbb{C}$,

$$|\int s g \, d\mu| = |I(s)| \leq \|I\| \cdot \|s\|_p.$$

By the expression of g -norm via integrating against simple functions in L^p , we get $\|g\|_q \leq \|I\| < \infty$. Thus, I_g is a bounded linear functional on L^p and so is I , and they coincide on simple functions. But the set of simple functions is dense in L^p and I_g and I are continuous, so they must coincide on all of L^p , i.e. $I = I_g$.

Lastly, note that such a g is unique, for example, because if there were another $\tilde{g} \in L^q$ with $I_g = I_{\tilde{g}}$, then $I_g - I_{\tilde{g}} = I_g - I_{\tilde{g}} = 0$, so $\|g - \tilde{g}\|_q = 0$ since the map $g - \tilde{g} \mapsto I_{g - \tilde{g}}$ is an isometry.

Case μ σ -finite. Let $X = \bigcup_{n \in \mathbb{N}} X_n$ where $\mu(X_n) < \infty$. For each $n \in \mathbb{N}$, there is a unique (mod null) $g_n \in L^q(X_n, \mu|_{X_n})$ s.t. $I|_{L^p(X_n)} = I_{g_n}$. Naturally, $L^p(X_n) \subseteq L^p(X_{n+1}) \subseteq \dots L^p(X)$ by sending a function on X_n to a function defined as 0 outside of X_n and 0 on X_n . Thus, $L^p(X) = \bigcup_{n \in \mathbb{N}} L^p(X_n)$ and by uniqueness, $g_{n+1}|_{X_n} = g_n$ a.e. so the pointwise limit $\lim_{n \rightarrow \infty} g_n =: g$ exists. Note that $|g_n|^q \rightarrow |g|^q$ so by DCT, $\|g\|_q = \lim_{n \rightarrow \infty} \|g_n\|_q \leq \|I\| < \infty$ so $g \in L^q(X)$. Finally, for each $f \in L^p(X)$, we have:

$$\begin{aligned}
 I_g(f) &= \int fg d\mu \stackrel{\text{DCT}}{=} \lim_{n \rightarrow \infty} \int \mathbb{1}_{X_n} fg d\mu = \lim_{n \rightarrow \infty} \int \mathbb{1}_{X_n} f \cdot g_n d\mu = \lim_{n \rightarrow \infty} I_{g_n}(\mathbb{1}_{X_n} f) = \lim_{n \rightarrow \infty} I(\mathbb{1}_{X_n} f) \\
 &= I(f) \text{ by the continuity of } I \text{ since } \mathbb{1}_{X_n} f \rightarrow_{L^p} f \text{ again by DCT.}
 \end{aligned}$$

QED

Remark. This theorem actually holds for all measures when $p > 1$ (i.e. $q < \infty$) by a simple measure exhaustion argument with σ -finite subsets of X , which works because for every $f \in L^p(X, \mu)$, the set $\{f \neq 0\}$ is σ -finite.

Riesz representation: the dual of $C_c(X)$.

As we saw, if $p = \infty$, then identifying $(\ell^\infty(X, \mathcal{B}, \mu))$ with $\text{bdd } \mathcal{B}$ -measurable functions on X , the proof of the map $L^2 \rightarrow (\ell^\infty)^*$ only gives that each $I \in (\ell^\infty)^*$ defines a **finitely additive** complex measure μ since the continuity doesn't boost finite additivity to ctbl additivity. Indeed, $\mathcal{B}(X, \mathcal{B})^*$ contains all finitely additive complex measures, including all ultrafilters on \mathcal{B} . We would like to shrink $\mathcal{B}(X, \mathcal{B})^*$ by shrinking $\mathcal{B}(X, \mathcal{B})$ to a very small closed subspace $V \subseteq \mathcal{B}(X, \mathcal{B})$ such that V^* only consists of ctbl additive complex measures, so a finitely additive measure on (X, \mathcal{B}) integrated against functions in V behaves the same way as a countably additive measure. In other words, we need to boost finite additivity to ctbl additivity.

But we did this already when defining the Bernoulli measures on \mathbb{Z}^N and the Lebesgue measure on \mathbb{R}^d ; see lectures 3 and 4 of Math 564, Fall 2025. Indeed, to prove that a measure on an algebra (of cylinders and of boxes, respectively) we defined was ctbl additive, we used **compactness!** This is what reduces infinite covers to finite, thus amplifying finite to ctbl additivity.

So we let X be a topological space and consider the space $C_c(X)$ of **compactly supported** (i.e. $\overline{\text{supp}(f)} := \overline{\{f \neq 0\}}$ is compact) continuous functions on X . This is a nonclosed subspace of $\mathcal{B}(X)$ so we take its closure as V . To ensure the richness of $C_c(X)$, we need to assume that X is **locally compact Hausdorff** (lcH).